Sem 4‎ > ‎CG LAB‎ > ‎

### Q11: WAP to perform Scaling wrt a Point.

posted Feb 26, 2012, 7:58 AM by Neil Mathew   [ updated Feb 26, 2012, 8:05 AM ]
 SOURCE CODE:```1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 #include #include #include   int n; int P[3][10]; int P2[3][10];   int S[3][3]; int Sx,Sy; int h,k;   void INPUT() { int ch; cout<<"\n For Polygon where No of edges (>3) = "; cin>>n;   cout<<"\n Enter the coordinates of "<>P[0][i]>>P[1][i]; P[2][i]=1; }   cout<<"\n Enter the Scaling Factors:"; cout<<"\n for X axis: "; cin>>Sx; cout<<" for Y axis: "; cin>>Sy;   cout<<"\n Scaling W.R.T which point (1/2/3...) : "; cin>>ch;   h=P[0][ch-1]; k=P[1][ch-1]; }     void ScalingPoint() {   // S[3][3] : Scaling MATRIX // P[3][n] : 3 x n MATRIX // P2[3][n] : Final MATRIX   //Scaling Matrix: //1st - making the identity Matrix for(int i=0; i<3; i++) { for(int j=0; j<3; j++) {         if(i==j)     //DIAGONAL         S[i][j] = 1;         else         S[i][j] = 0; } } //2nd - making changes S[0][0] = Sx; S[1][1] = Sy; S[0][2] = -(h*Sx)+h; S[1][2] = -(k*Sy)+k;       // Matrix Multiplication // S(3x3)  x  P(3xN)   for(i=0; i<3; i++) { for(int j=0; j